Instrumentation

How to convert mA signal into % in instruments?(ie 4-20 mA=0 to100%)

Example calculation: controller output to valve

An electronic loop controller outputs a signal of 8.55 mA to a direct-responding control valve (where 4 mA is shut and 20 mA is wide open). How far open should the control valve be at this MV signal level?

We must convert the milliamp signal value into a percentage of valve travel. This means determining the percentage value of the 8.55 mA signal on the 4-20 mA range. First, we need to manipulate the percentage-milliamp formula to solve for percentage (x):

 

Next, we plug in the 8.55 mA signal value and solve for x:

Therefore, the control valve should be 28.4 % open when the MV signal is at a value of 8.55 mA.

 

Example calculation: flow transmitter

A flow transmitter is ranged 0 to 350 gallons per minute, 4-20 mA output, direct-responding. Calculate the current signal value at a flow rate of 204 GPM.

 

First, we convert the flow value of 204 GPM into a percentage of range. This is a simple matter of division, since the flow measurement range is zero-based:

Next, we take this percentage value and translate it into a milliamp value using the formula previously shown:

Therefore, the transmitter should output a PV signal of 13.3 mA at a flow rate of 204 GPM.

 

Example calculation: temperature transmitter

An electronic temperature transmitter is ranged 50 to 140 degrees Fahrenheit and has a 4-20 mA output signal. Calculate the current output by this transmitter if the measured temperature is 79 degrees Fahrenheit.

First, we convert the temperature value of 79 degrees into a percentage of range based on the knowledge of the temperature range span (140 degrees − 50 degrees = 90 degrees) and lower-range value (LRV = 50 degrees). We may do so by manipulating the general formula for any linear measurement to solve for x:

Next, we take this percentage value and translate it into a 4-20 mA current value using the formula previously shown:

Therefore, the transmitter should output a PV signal of 9.16 at a temperature of 79o F.

 

Example calculation: pH transmitter

A pH transmitter has a calibrated range of 4 pH to 10 pH, with a 4-20 mA output signal. Calculate the pH sensed by the transmitter if its output signal is 11.3 mA.

First, we must convert the milliamp value into a percentage. Following the same technique we used for the control valve problem:

Next, we take this percentage value and translate it into a pH value, given the transmitter’s measurement span of 6 pH (10 pH − 4 pH) and offset of 4 pH:

Therefore, the transmitter’s 11.3 mA output signal reflects a measured pH value of 6.74 pH.

 

Example calculation: reverse-acting I/P transducer signal

A current-to-pressure transducer is used to convert a 4-20 mA electronic signal into a 3-15 PSI pneumatic signal. This particular transducer is configured for reverse action instead of direct, meaning that its pressure output at 4 mA should be 15 PSI and its pressure output at 20 mA should be 3 PSI. Calculate the necessary current signal value to produce an output pressure of 12.7 PSI. Reverse-acting instruments are still linear, and therefore still follow the slope-intercept line formula y = mx + b. The only differences are a negative slope and a different intercept value. Instead of y = 16x + 4 as is the case for direct-acting instruments, this reverse-acting instrument follows the linear equation y = −16x + 20:

First, we need to to convert the pressure signal value of 12.7 PSI into a percentage of 3-15 PSI range. We will manipulate the percentage-pressure formula to solve for x:

Next, we plug in the 12.7 PSI signal value and solve for x:

 

This tells us that 12.7 PSI represents 80.8 % of the 3-15 PSI signal range. Plugging this percentage value into our modified (negative-slope) percentage-current formula will tell us how much current is necessary to generate this 12.7 PSI pneumatic output:

Therefore, a current signal of 7.07 mA is necessary to drive the output of this reverse-acting I/P transducer to a pressure of 12.7 PSI.

 

Also read

Difference between filled impulse line and purged impulse line

Different types of calibration

 

Related Articles

Back to top button

Adblock Detected

We Noticed You're Using an Ad Blocker Hi there! We understand that ads can be annoying, but they help support our website and allow us to continue providing you with high-quality content. Please consider whitelisting our site or disabling your ad blocker while you visit. Your support means a lot to us! Thank you for understanding!