BASIC CONTROL PRINCIPLES
INTRODUCTION
Control of the processes in the plant is an essential part of the plant operation.The level of the boiler must be kept within a certain range. The heat transport pressure is another critical parameter that must be controlled. If it is too high the system will burst, if it is too low the water will boil. Either condition impairs the ability of the heat transport system to cool the fuel.These are some of the examples that to remind you that plant must be properly monitored and controlled.In this section we will look at the very basics of control.
Theory
Consider a typical process control system. For a particular example let us look at an open tank, which supplies a process, say, a pump, at its output. The tank will require a supply to maintain its level at a fixed predetermined point. This predetermined level is referred to as the set point (SP) and it is also the controlled quantity of the system.
If the inflow and outflow are in mass balance, the level willremain constant. Any difference in the relative flows will cause the levelto vary. For a control system there must be variables.
The two in which we are most interested are:
- The controlled variable – in our example this will be level.
- The manipulated variable -the inflow or outflow from the system.
If we look more closely at our sample system in Figure, assuming the level is at the setpoint, the inflow to the system and outflow are balanced. Obviously no control action is required whilst this status quoexists. Control action is only necessary when a difference or error exists between the setpoint and the measured level. Depending on whether this error is a positive or negative quantity, the appropriate control correction will be made in an attempt to restore the process to the setpoint.
Henceforth, the error will always take the form of:
Error = Setpoint- Measured Quantity
OR
e = SP – M
The control action will be either to vary the inflow or outflow from the system in order to keep the level at the setpoint. Let us consider the general format for achieving these objectives.
As can be seen from Figure, the process can be represented by a closed loop. The system output (level) is monitored by a process sensor and the measurement signal is feedback to a comparator at the input of the system.
The second input to the comparator is the setpoint signal; the comparator’s output being the difference or error signal. The amplifier will provide the appropriate correction to maintain the process at its setpoint despite disturbances that may occur.
It can be seenthat if the system were being operated in manual controlthe feedback path would not be present. The operator would provide thisfeedback and apply the necessary correction to the system whilstobserving the effect on the controlled variable. This is termed open loopoperation.
Feedback Control
This concept justifies the use of the word negative in three ways:
- The negative aspect of feeding the measured signal backwards from the output to the input of the system. (Actual definition of negative feedback control).
- The control correction must be negative in that a correction rather than a compounding of error must occur.
- The fact that an error must occur before a correction can take place, i.e., retrospective or negative control action.
Feedforward Control
If we wish to control our process without an error first occurring, we must base our control on correction of the disturbances, which will eventually, cause a process error. This is termed feedforward control. Feedforward control is rarely if ever used on its own but is used in conjunction with feedback control to improve the response of control to process disturbances.